Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.888
Filter
1.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38564341

ABSTRACT

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Subject(s)
DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genetics , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA/metabolism , Mycobacterium tuberculosis/genetics
2.
Ann Clin Microbiol Antimicrob ; 23(1): 36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664815

ABSTRACT

BACKGROUND: Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS: Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS: All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS: Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.


Subject(s)
Antitubercular Agents , Diarylquinolines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Diarylquinolines/pharmacology , Humans , Antitubercular Agents/pharmacology , Iran , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Verapamil/pharmacology
3.
Front Immunol ; 15: 1330796, 2024.
Article in English | MEDLINE | ID: mdl-38665909

ABSTRACT

Introduction: There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods: Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results: A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion: The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.


Subject(s)
Antigens, Bacterial , Cytokines , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/blood , Male , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Latent Tuberculosis/blood , Latent Tuberculosis/microbiology , Female , Mycobacterium tuberculosis/immunology , Philippines , Adult , Cytokines/blood , Middle Aged , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Young Adult , Bacterial Proteins/immunology
4.
J Cell Mol Med ; 28(8): e18279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634203

ABSTRACT

The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Pyrazinamide/chemistry , Pyrazinamide/metabolism , Pyrazinamide/pharmacology , Mycobacterium tuberculosis/genetics , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests
5.
Lancet Glob Health ; 12(5): e793-e803, 2024 May.
Article in English | MEDLINE | ID: mdl-38583458

ABSTRACT

BACKGROUND: Tuberculosis, a major cause of death in people living with HIV, remains challenging to diagnose. Diagnostic accuracy data are scarce for promising triage and confirmatory tests such as C-reactive protein (CRP), sputum and urine Xpert MTB/RIF Ultra (Xpert Ultra), and urine Determine TB LAM Ag (a lateral flow lipoarabinomannan [LF-LAM] test), without symptom selection. We evaluated novel triage and confirmatory tests in ambulatory people with HIV initiating antiretroviral therapy (ART). METHODS: 897 ART-initiators were recruited irrespective of symptoms and sputum induction offered. For triage (n=800), we evaluated point-of-care blood-based CRP testing, compared with the WHO-recommended four-symptom screen (W4SS). For sputum-based confirmatory testing (n=787), we evaluated Xpert Ultra versus Xpert MTB/RIF (Xpert). For urine-based confirmatory testing (n=732), we evaluated Xpert Ultra and LF-LAM. We used a sputum culture reference standard. FINDINGS: 463 (52%) of 897 participants were female. The areas under the receiver operator characteristic curves for CRP was 0·78 (95% CI 0·73-0·83) and for number of W4SS symptoms was 0·70 (0·64-0·75). CRP (≥10 mg/L) had similar sensitivity to W4SS (77% [95% CI 68-85; 80/104] vs 77% [68-85; 80/104]; p>0·99] but higher specificity (64% [61-68; 445/696] vs 48% [45-52; 334/696]; p<0·0001]; reducing unnecessary confirmatory testing by 138 (95% CI 117-160) per 1000 people and number-needed-to-test from 6·91 (95% CI 6·25-7·81) to 4·87 (4·41-5·51). Sputum samples with Xpert Ultra, which required induction in 49 (31%) of 158 of people (95% CI 24-39), had higher sensitivity than Xpert (71% [95% CI 61-80; 74/104] vs 56% [46-66; 58/104]; p<0·0001). Of the people with one or more confirmatory sputum or urine test results that were positive, the proportion detected by Xpert Ultra increased from 45% (26-64) to 66% (46-82) with induction. Programmatically done haemoglobin, triage test combinations, and urine tests showed comparatively worse results. INTERPRETATION: CRP is a more specific triage test than W4SS in those initiating ART. Sputum induction improves diagnostic yield. Sputum samples with Xpert Ultra is a more accurate confirmatory test than with Xpert. FUNDING: South African Medical Research Council, EDCTP2, US National Institutes of Health-National Institute of Allergy and Infectious Diseases.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Female , Male , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/urine , Point-of-Care Systems , C-Reactive Protein , Prospective Studies , Cross-Sectional Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis/drug therapy , HIV Infections/diagnosis , HIV Infections/drug therapy , Sputum
6.
Front Immunol ; 15: 1383098, 2024.
Article in English | MEDLINE | ID: mdl-38633252

ABSTRACT

Despite major global efforts to eliminate tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), this disease remains as a major plague of humanity. Several factors associated with the host and Mtb interaction favor the infection establishment and/or determine disease progression. The Early Secreted Antigenic Target 6 kDa (ESAT-6) is one of the most important and well-studied mycobacterial virulence factors. This molecule has been described to play an important role in the development of tuberculosis-associated pathology by subverting crucial components of the host immune responses. This review highlights the main effector mechanisms by which ESAT-6 modulates the immune system, directly impacting cell fate and disease progression.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antigens, Bacterial , Bacterial Proteins , Disease Progression
7.
Sci Rep ; 14(1): 9141, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644371

ABSTRACT

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Subject(s)
BCG Vaccine , Bacterial Proteins , DNA-Binding Proteins , Interferon-gamma , Mycobacterium tuberculosis , Protein Processing, Post-Translational , Humans , Interferon-gamma/metabolism , Bacterial Proteins/immunology , BCG Vaccine/immunology , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mycobacterium tuberculosis/immunology , Recombinant Proteins/immunology , Oligodeoxyribonucleotides/pharmacology , Tuberculosis/prevention & control , Tuberculosis/immunology , CpG Islands , Mycobacterium smegmatis/immunology , Mycobacterium smegmatis/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Female
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 330-336, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645872

ABSTRACT

Objective: To express the protein enconded by the Rv3432c gene of Mycobacterium tuberculosis (M.tb) in vitro by prokaryotic expression, to analyze the structure of the Rv3432c protein by using bioinformatics software, and to explore for new drug targets against M.tb. Methods: The Rv3432c gene was amplified by PCR using the genomic DNA of the inactivated M.tb strain H37Rv as the template and a recombinant plasmid was constructed with the expression vector pET-28a. The expression products were analyzed by SDS-PAGE and purified using affinity chromatography. The biological properties of Rv3432c were analyzed with Protparam, the Pfam online tool, SOMPA, Protscale, TMHMM Signalp 6.0, NetPhos3.1, SUMOsp 2.0, and SWISS-MODEL. Results: pET-28a-Rv3432c recombinant plasmid sequencing results were fully consistent with those of the target gene. SDS-PAGE analysis showed that the fusion protein existed in the form of a soluble protein with a relative molecular mass of about 55×103, which matched the expected size. ProtParam analysis showed that the Rv3432c protein was hydrophilic (showing a GRAVY value of -0.079). Rv3432c was a protein with no transmembrane structural domains or signal peptide. The secondary structure of Rv3432c mainly consisted of random coils (39.78%) and α-helix (39.57%) and was relatively loosely structured. Conclusion: We successfully constructed a prokaryotic expression plasmid of the Rv3432c protein and analyzed its structure using bioinformatics, laying the foundation for further research on the role of Rv3432c in the pathogenesis and progression of tuberculosis as well as the identification of new drug targets against M.tb.


Subject(s)
Bacterial Proteins , Computational Biology , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Computational Biology/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors , Cloning, Molecular
9.
mSphere ; 9(4): e0006124, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564709

ABSTRACT

Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.


Subject(s)
Bacterial Proteins , Cysteine , Energy Metabolism , Glycopeptides , Homeostasis , Mycobacterium tuberculosis , Oxidation-Reduction , Oxidative Stress , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Reactive Oxygen Species/metabolism , Antitubercular Agents/pharmacology , Ergothioneine/metabolism , Inositol/metabolism , Mycobacterium marinum/drug effects , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Gene Deletion
10.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643090

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Nontuberculous Mycobacteria , Drug Resistance , Internet
11.
Curr Microbiol ; 81(5): 127, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575759

ABSTRACT

An urgent need is to introduce an effective vaccine against Mycobacterium tuberculosis (M.tb) infection. In the present study, a multi-stage M.tb immunodominant Fcγ1 fusion protein (Ag85B:HspX:hFcγ1) was designed and produced, and the immunogenicity of purified protein was evaluated. This recombinant fusion protein was produced in the Pichia pastoris expression system. The HiTrap-rPA column affinity chromatography purified and confirmed the fusion protein using ELISA and Western blotting methods. The co-localisation assay was used to confirm its proper folding and function. IFN-γ, IL-12, IL-4, and TGF-ß expression in C57BL/6 mice then evaluated the immunogenicity of the construct in the presence and absence of BCG. After expression optimisation, medium-scale production and the Western blotting test confirmed suitable production of Ag85B:HspX:hFcγ1. The co-localisation results on antigen-presenting cells (APCs) showed that Ag85B:HspX:hFcγ1 properly folded and bound to hFcγRI. This strong co-localisation with its receptor can confirm inducing proper Th1 responses. The in vivo immunisation assay showed no difference in the expression of IL-4 but a substantial increase in the expression of IFN-γ and IL-12 (P ≤ 0.02) and a moderate increase in TGF-ß (P = 0.05). In vivo immunisation assay revealed that Th1-inducing pathways have been stimulated, as IFN-γ and IL-12 strongly, and TGF-ß expression moderately increased in Ag85B:HspX:hFcγ1 group and Ag85B:HspX:hFcγ1+BCG. Furthermore, the production of IFN-γ from splenocytes in the Ag85B:HspX:hFcγ1 group was enormously higher than in other treatments. Therefore, this Fc fusion protein can make a selective multi-stage delivery system for inducing appropriate Th1 responses and is used as a subunit vaccine alone or in combination with others.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Mice , Animals , Mycobacterium tuberculosis/genetics , Bacterial Proteins/genetics , Antigens, Bacterial/genetics , BCG Vaccine , Interleukin-4 , Mice, Inbred C57BL , Recombinant Proteins/genetics , Interleukin-12 , Transforming Growth Factor beta , Tuberculosis Vaccines/genetics , Acyltransferases/genetics
12.
Biochem Biophys Res Commun ; 710: 149898, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38598903

ABSTRACT

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown. Herein, we determined the crystal structure of the N-terminal domain of the type II antitoxin MazE-mt10 from Mycobacterium tuberculosis, revealing a homodimer of the ribbon-helix-helix (RHH) fold with distinct DNA binding specificity. NMR studies demonstrated that full-length MazE-mt10 forms the helical and coiled states in equilibrium within the C-terminal region, and that helical propensity is allosterically enhanced by the N-terminal binding to the cognate operator DNA. This coil-to-helix transition may promote toxin binding/neutralization of MazE-mt10 and further stabilize the TA-DNA transcription repressor. This is supported by many crystal structures of type II TA complexes in which antitoxins form an α-helical structure at the TA interface. The hidden helical state of free MazE-mt10 in solution, favored by DNA binding, adds a new dimension to the regulatory mechanism of type II TA systems. Furthermore, complementary approaches using X-ray crystallography and NMR allow us to study the allosteric interdomain interplay of many other full-length antitoxins of type II TA systems.


Subject(s)
Antitoxins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Antitoxins/chemistry , Models, Molecular , Transcription Factors/metabolism , DNA/metabolism , Bacterial Proteins/metabolism
13.
J Infect Dev Ctries ; 18(3): 435-440, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38635619

ABSTRACT

INTRODUCTION: Tubercular meningitis (TBM) is a serious public health problem in developing countries as it leads to significant mortality and residual neurological sequelae. The estimated mortality due to TBM in India is 1.5 per 100,000 population. In resource-limited settings, only the Ziehl-Neelsen (ZN) stain, which has very little sensitivity, is available. The World Health Organization recommended the Loop Mediated Isothermal Amplification (TB LAMP) assay for pulmonary tuberculosis only. We evaluated this test for tubercular meningitis as well. METHODOLOGY: In a cross-sectional study of 2-year duration, we have taken 239 cerebrospinal fluid samples from suspected cases of tubercular meningitis patients. ZN staining along with Mycobacteria Growth Indicator Tube (MGIT) TB culture, Xpert MTB/RIF Ultra assay, and commercial TB LAMP assay were performed for each sample. RESULTS: Out of 239 samples, 40 samples (16.73%) were found TB LAMP assay positive, 48 samples (20.08%) were found Xpert ultra-assay positive, 12 samples (5.02%) were MGIT TB culture positive and acid-fast bacillus smear positive in ten samples (4.18 %). Out of 12 MGIT-positive samples, all samples (100%) were TB LAMP and Xpert ultra positive and one sample (8.33%) was ZN smear positive. In 199 negative samples from the TB LAMP assay, eight samples were positive by Xpert, none by MGIT TB culture and AFB smear. Sensitivity and specificity were found as 100% and 87.66%, respectively, for the TB LAMP assay. CONCLUSION: TB LAMP assay is a rapid, cost-effective, sensitive, and specific test for tubercular meningitis infection in resource-limited settings.


Subject(s)
Molecular Diagnostic Techniques , Mycobacterium tuberculosis , Nucleic Acid Amplification Techniques , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Mycobacterium tuberculosis/genetics , Resource-Limited Settings , Cross-Sectional Studies , Sensitivity and Specificity , Sputum/microbiology
14.
Mol Med Rep ; 29(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639174

ABSTRACT

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Subject(s)
Inflammation , Mycobacterium tuberculosis , Animals , Mice , Inflammation/metabolism , Immunity, Innate , Mycobacterium tuberculosis/metabolism , NF-kappa B , Fibrosis , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice, Inbred C57BL
16.
Int J Tuberc Lung Dis ; 28(4): 189-194, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38563336

ABSTRACT

BACKGROUNDKey challenges in paediatric TB diagnosis are invasive sampling and poor sensitivity of standard methods. This study demonstrates the diagnostic potential of non-invasive sampling of bioaerosols from children using SMaRT-PCR, comprising mask sampling combined with reverse transcriptase-polymerase chain reaction (RT-PCR) for TB.METHODSExhaled bioaerosols were captured on modified N-95 masks in a 10-min talk-cough-breathe process from 51 children (30 with TB confirmed using standard sampling methods and 21 without TB) aged 2-15 years. All mask samples were tested using in-house RT-PCR for 16s and rpoB RNA transcripts. Additional mask samples from children with TB were tested using Xpert® MTB/RIF (n = 3) and Xpert® MTB/RIF Ultra (n = 27).RESULTSSMaRT-PCR sensitivity for detecting TB among treatment-naïve children was 96% if 16s or rpoB was present, and 75% if both genes were present, comparable to standard methods (71%) in the same cohort. Specificity was better for both genes, at 95%, than 85% for a single gene detection. Mask sampling with Xpert MTB/RIF or Ultra had a sensitivity of only 13%.CONCLUSIONThis is the first study to provide evidence for testing bioaerosols as a promising alternative for detecting paediatric TB. Sampling is non-invasive and simple, with the potential for point-of-care applications. This pilot study also suggests that RNA transcript-based detection may improve TB diagnostic sensitivity in children; however, further investigation is required to establish its adaptability in clinical settings..


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Child , Mycobacterium tuberculosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , Pilot Projects , Tuberculosis, Pulmonary/diagnosis , RNA , Sensitivity and Specificity
17.
BMC Infect Dis ; 24(1): 364, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556907

ABSTRACT

BACKGROUND: The emergence of Drug Resistant Tuberculosis (DR-TB) is one of the main public health and economic problems facing the world today. DR-TB affects mostly those in economically productive years and prevents them from being part of the workforce needed for economic growth. The aim of this study was to determine the Clinical Profile and Outcomes of DR-TB in Central Province of Zambia. METHODS: This was a retrospective cross sectional study that involved a review of records of patients with confirmed DR-TB who were managed at Kabwe Central Hospital's Multi-Drug Resistant TB (MDR-TB) Ward from the year 2017 to 2021. 183 patients were managed during this period and all were recruited in the study. Data was collected from DR-TB registers and patient files and then entered in SPSS version 22 where all statistical analyses were performed. RESULTS: The study revealed that the prevalence of DR-TB among registered TB patients in Central Province was 1.4%. Majority of those affected were adults between the ages of 26 and 45 years (63.9%). The study also found that more than half of the patients were from Kabwe District (60.7%). Other districts with significant number of cases included Kapiri Mposhi 19 (10.4%), Chibombo 12 (6.6%), Chisamba 10 (5.5%), Mumbwa 7 (3.8%) and Mkushi 7 (3.8%). Furthermore, the analysis established that most of the patients had RR-TB (89.6%). 9.3% had MDR-TB, 0.5% had IR-TB and 0.5% had XDR-TB. RR-TB was present in 93.8% of new cases and 88.9% of relapse cases. MDR-TB was present in 6.2% of new cases and 10% of relapse cases. With regard to outcomes of DR-TB, the investigation revealed that 16.9% of the patients had been declared cured, 45.9% had completed treatment, 6% were lost to follow up and 21.3% had died. Risk factors for mortality on multivariate analysis included age 36-45 years (adjusted odds ratio [aOR] 0.253, 95% CI [0.70-0.908] p = 0.035) and male gender (aOR 0.261, 95% CI [0.107-0.638] p = 0.003). CONCLUSION: The research has shown beyond doubt that the burden of DR-TB in Central Province is high. The study recommends putting measures in place that will help improve surveillance, early detection, early initiation of treatment and proper follow up of patients.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Adult , Humans , Male , Middle Aged , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Cross-Sectional Studies , Prevalence , Recurrence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Zambia/epidemiology , Female
18.
BMC Pediatr ; 24(1): 223, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561744

ABSTRACT

BACKGROUND: Miliary tuberculosis (TB) is a lethal hematogenous spread form of mycobacterium tuberculosis with approximately 15-20% mortality rate in children. The present report highlights the clinical manifestations of an unusual presentation of miliary tuberculosis in a 12-year-old girl. CASE PRESENTATION: In this case, extensive lung involvement was presented despite the absence of respiratory symptoms. Also, some central hypo-intense with hyper-intense rim nodules were detected in the brain's pons, right cerebral peduncles and lentiform nucleus. CONCLUSION: The results of this study showed that severe miliary TB may occur even in a person who received the Bacille Calmette-Guérin (BCG) vaccine.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Miliary , Child , Female , Humans , Tuberculosis, Miliary/diagnosis , Tuberculosis, Miliary/drug therapy , BCG Vaccine , Pons
19.
Eur J Med Res ; 29(1): 213, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561853

ABSTRACT

OBJECTIVES: This study aims to compare the diagnostic efficacy of metagenomic next-generation sequencing (mNGS) to traditional diagnostic methods in patients with lower respiratory tract infections (LRTIs), elucidate the etiological spectrum of these infections, and explore the impact of mNGS on guiding antimicrobial therapy. METHODS: We retrospectively analyzed data from 128 patients admitted to the Respiratory Department of Anqing 116 Hospital between July 2022 and July 2023. All patients had undergone both mNGS and conventional microbiological techniques (CMT) for LRTI diagnosis. We assessed the diagnostic performance of these methods and examined the influence of mNGS on antimicrobial decision-making. RESULTS: Overall, mNGS demonstrated superior sensitivity (96.8%) and accuracy (96.8%) compared to CMT. For Mycobacterium tuberculosis detection, the accuracy and sensitivity of mNGS was 88.8% and 77.6%, which was lower than the 94.7% sensitivity of the T-spot test and the 79.6% sensitivity of CMT. In fungal pathogen detection, mNGS showed excellent sensitivity (90.5%), specificity (86.7%), and accuracy (88.0%). Bacteria were the predominant pathogens detected (75.34%), with Mycobacterium tuberculosis (41.74%), Streptococcus pneumoniae (21.74%), and Haemophilus influenzae (16.52%) being most prevalent. Bacterial infections were most common (62.10%), followed by fungal and mixed infections (17.74%). Of the 118 patients whose treatment regimens were adjusted based on mNGS results, 102 (86.5%) improved, 7 (5.9%) did not respond favorably, and follow-up was lost for 9 patients (7.6%). CONCLUSIONS: mNGS offers rapid and precise pathogen detection for patients with suspected LRTIs and shows considerable promise in diagnosing Mycobacterium tuberculosis and fungal infections. By broadening the pathogen spectrum and identifying polymicrobial infections, mNGS can significantly inform and refine antibiotic therapy.


Subject(s)
Anti-Infective Agents , Coinfection , Mycobacterium tuberculosis , Respiratory Tract Infections , Humans , Retrospective Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Sensitivity and Specificity
20.
Front Public Health ; 12: 1356826, 2024.
Article in English | MEDLINE | ID: mdl-38566794

ABSTRACT

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Rifampin/pharmacology , Ethiopia , Cross-Sectional Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/microbiology , Mutation , Genotype , Fluoroquinolones
SELECTION OF CITATIONS
SEARCH DETAIL
...